
 

 
Performance Requirements of Tools and Methods for 

Specifying Network Communication Scenarios Using the 
Real-Time Application Representative Version 1.0 

 
by Rommie Hardy and Binh Nguyen 

 
 

ARL-TR-4614 September 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved for public release; distribution unlimited.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position 
unless so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or 
approval of the use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 



 

 

Army Research Laboratory 
Adelphi, MD 20783-1197 
 

ARL-TR-4614 September 2008 
 
 
 
 

Performance Requirements of Tools and Methods for 
Specifying Network Communication Scenarios Using the 

Real-Time Application Representative Version 1.0 

 
Rommie Hardy and Binh Nguyen 

Computational and Information Sciences Directorate, ARL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution unlimited.  



 
 

 

FOR OFFICIAL USE ONLY 
ii

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this 
burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington 
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number. 

1. REPORT DATE (DD-MM-YYYY) 

September 2008 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

 
4. TITLE AND SUBTITLE 

Performance Requirements of Tools and Methods for Specifying Network 
Communication Scenarios Using the Real-Time Application Representative 
Version 1.0 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Rommie Hardy and Binh Nguyen 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  AMSRD-ARL-CI-NT 
2800 Powder Mill Road 
Adelphi MD 20783-1197 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TR-4614 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR’S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

This report identifies the performance needs of tools and methods that will be potentially capable of specifying data 
communication scenarios. These communication scenarios will be automatically generated using the Real-time Application 
Representative (RAPR) tool.  The specifications define a specific behavior of a communication scenario for the RAPR tool 
being deployed in the wireless emulation laboratory (WEL) at the U.S. Army Research Laboratory (ARL).  The report includes 
example descriptions of the RAPR input files and scripts used to specify network communication scenarios.  

15. SUBJECT TERMS 

Real-time application representative (RAPR), performance, communication 

16. SECURITY CLASSIFICATION OF:   
17. LIMITATION 
      OF  

 ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

30 

19a. NAME OF RESPONSIBLE PERSON 

Rommie Hardy 
a. REPORT 

U 
b. ABSTRACT 

U 
c. THIS PAGE 

U 
19b. TELEPHONE NUMBER (Include area code) 

(301) 394-1189 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

 iii

Contents 

List of Figures iv 

List of Tables iv 

Acknowledgments v 

Summary 1 

1.  Background 3 

1.1  Dictionary ........................................................................................................................3 

2.1  Behavior-Event/Logic Table ...........................................................................................4 

1.3  Input Script ......................................................................................................................5 

2.  Method 6 

3.  Operational Concept 6 

4.  Performance Requirements 7 

4.1  The RAPR Dictionary Editor ..........................................................................................7 

4.1.1  The Editing Area .................................................................................................7 

4.1.2  The Viewing Area .............................................................................................10 

4.1.3  The RAPR Dictionary XML Tags .....................................................................10 

4.2  The RAPR Logic-Table Editor ......................................................................................10 

4.2.1  The Editing Area ...............................................................................................11 

4.2.2  The Viewing Area .............................................................................................12 

4.2.3  The RAPR Logic-Table XML Tags ..................................................................12 

4.3  The RAPR Script Editor ................................................................................................13 

4.3.1  The Editing Area ...............................................................................................13 

4.3.2  The Viewing Area .............................................................................................14 

4.3.3  RAPR Script – An Example ..............................................................................14 

5.  Conclusion 15 

References 16 



 

 iv

Appendix.  Script Syntax 17 

Acronyms 20 

Distribution List 21 
 
 

List of Figures 

Figure 1.  An example of the dictionary. .........................................................................................4 

Figure 2.  An example of a logic-table file. .....................................................................................5 

Figure 3.  An example of a RAPR input script. ...............................................................................6 

Figure 4.  A value tag example. .......................................................................................................8 

Figure 5.  A field tag example. ........................................................................................................9 

Figure 6. Example of RAPR dictionary XML tag format. ............................................................10 

Figure 7.  Example of RAPR logic-table XML tag format. ...........................................................13 

Figure 8.  An example of RAPR script. .........................................................................................14 

Figure A-1. Behavior events. .........................................................................................................17 

Figure A-2. Reception events. .......................................................................................................18 

Figure A-3. RAPR events. .............................................................................................................18 

Figure A-4. Run-time interface. .....................................................................................................18 

Figure A-5.  RAPR global commands. ..........................................................................................19 

Figure A-6.  Multi-Generator (MGEN) patterns. ...........................................................................19 
 

List of Tables 

Table 1.  User defined input for the RAPR dictionary editor. .........................................................8 

Table 2.  User defined input for the RAPR logic-table editor. ......................................................11 

Table 3.  Editing area input for the RAPR script editor. ................................................................13 

Table 4.  An example of text being typed into the entry fields. .....................................................14 
 



 

 v

Acknowledgments 

Richard Gopaul provided much direction in the early phase of this project.  His constructive 
comments have been incorporated into this report.  Mr. Gopaul has left the U.S. Army Research 
Laboratory (ARL), but continues serving the Nation in a different role at a different place. 

 



 

 vi

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 



 

 1

Summary 

The Real-time Application Representative (RAPR) tool is a traffic generation tool that was 
developed by the U.S. Naval Research Laboratory (NRL).  The run-time behavior of the RAPR 
tool is defined by the textual specifications embedded in three different file types: dictionary, 
logic-table, and script files. The manual creation of these files is time-consuming, tedious, and 
error-prone.  Therefore, this report is focused on how to specify the performance needs of a tool 
and method potentially capable of minimizing syntax errors, speeding up the creation of required 
files, and providing a graphical user interface tool for creating a communication scenario. 



 

 2

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 



 

 3

1. Background 

Emulating a dynamic wireless mobile ad hoc network (MANET) calls for executable 
specifications of mobility patterns and data communication scenarios.  The U.S. Army Research 
Laboratory (ARL) has developed an innovative solution meeting the first requirement (1).  This 
report identifies the performance needs of tools and methods that will be potentially capable of 
meeting the latter requirement: specifications of data communication scenarios.  Because ARL 
has decided to use the Real-time Application Representative (RAPR) tool (2) to generate and 
respond to actual network traffic in the emulation test bed, the specifications define a specific 
behavior of a communication scenario for the RAPR tool being deployed in the wireless 
emulation laboratory (WEL) at ARL (3).  The RAPR tool requires the following file types:  
(1) dictionary files, (2) logic-table files, and input script files (3). 

1.1 Dictionary 

The dictionary is used to translate name-value pairs used in the script and the logic table.  Each 
dictionary has one or more namespace fields.  Each namespace has a label field and one or 
more item fields.  Each field is given a name and assigned one or more values.  Each value is 
used to generate an event.  An example of the dictionary is shown in figure 1. 



 

 4

 

<RaprDictionary> 
  <namespace> 
    <label>DEFAULT</label>  
    <item> 
      <field>SA_UNICAST_GROUP</field>  
        <value>192.168.1.2</value>  
    </item> 
    <item> 
      <field>VIDEO_SERVER_SRCPORT</field> 
        <value>2000</value>  
    </item> 
    <item> 
      <field>VIDEO_SERVER_DSTPORT</field> 
        <value>2001</value>  
        <value>2002</value> 
    </item> 
    ... 
  </namespace> 
  ... 
  <namespace> 
    <label>WEL</label>  
    <item> 
      <field>DEFENDER</field>  
        <value>192.168.1.20</value>  
    </item> 
    ... 
    <item> 
      <field>AUDIO_SERVER_DSTPORT</field> 
        <value>3001</value>  
        <value>3002</value>  
        <value>3003</value>  
    </item> 
    ... 
  </namespace> 
</RaprDictionary> 
 

Figure 1.  An example of the dictionary. 

2.1 Behavior-Event/Logic Table 

The behavior-event table is also known as the logic table.  The table consists of one or more 
states.  Each state has one or more logicids.  Each logicid has an id field, a percent field, and one 
or more entry fields.  Each entry field defines the behavior associated with a given logicid.  The 
percent field defines the probability of the triggering event and ranges from 0.0 to 1.0 (default).  



 

 5

If the percent field is unassigned or its current value is removed, then it shall be assigned the 
default value (1.0).  An example of a logic-table file is described in figure 2. 

<RaprLogicTable> 
  <state> 
    <value>1.1</value>  
    <logicid> 
      <id>1</id>  
      <percent>0.1</percent>  
      <entry>DECLARATIVE UDP SRC … </entry>  
    </logicid> 
    <logicid> 
      <id>2</id>  
      <percent>0.2</percent>  
      <entry>DECLARATIVE UDP SRC … </entry>  
    </logicid> 
  </state> 
  … 
  <state> 
    <value>20.0</value>  
    <logicid> 
      <id>1</id>  
      <percent>1.0</percent>  
      <entry>0.0 STOP 5.0 … PAYLOAD 9</entry> 
    </logicid> 
  </state> 
</RaprLogicTable> 
 

Figure 2.  An example of a logic-table file. 

1.3 Input Script 

Each input script file describes a sequence of textual commands and scheduled events that define 
traffic patterns in a scenario.  Each event is specified in a single line in the script file.  The script 
has three types of events: (1) RAPR Event, (2) Reception Event, and (3) Behavior Event:   

• Each line specifying a RAPR Event is essentially a directive designed to control the 
behavior of the RAPR tool, such as specifying the use of the logic-table file or stopping it.   

• A Reception Event causes the RAPR to monitor a certain type of traffic or to join a 
multicast group.   

• A Behavior Event schedules and defines network traffic and consists of four types:  
(1) declarative, (2) interrogative, (3) stream, and (4) periodic event types.  

◦ A declarative event starts a traffic flow for a given duration.   



 

 6

◦ An interrogative event sends a message and waits for a response.   

◦ A stream event sends traffic and waits for and reacts to responses from other nodes.   

◦ A periodic event spawns declarative and interrogative event types at regular intervals.  

An example of a script is included in figure 3. 

LOAD_DICTIONARY /usr/src/dictionary-48nodes.xml 
HOSTID 24 
VERBOSE 
... 
TXLOG 
FLUSH 
CHECK 
0.0 STOP 600.0 LISTEN UDP %SA_LISTEN_PORT% 
0.0 STOP 600.0 DECLARATIVE UDP SRC %SA_UNICAST_SRC_PORT% ... 
 

Figure 3.  An example of a RAPR input script. 

The above sections summarize the background of the RAPR tool and the definitions of its file 
types, and present some examples of the files.  More detailed descriptions of the tool can be 
found on the Web site of its owner and developer (2).  The rest of this report specifies 
operational concepts, and the technical performance of graphical tools and methods for 
specifying network communications scenarios that will be executed in RAPR environments. 

2. Method 

This report is the result of a coordinated elicitation research to identify and understand the 
requirements for building a graphical tool capable of providing convenient methods for 
specifying a communication scenario.  During the elicitation period, the requirements were 
implemented in a software prototype using the Python programming language, which is a 
scripting language that is highly suitable for building prototype and graphical user interfaces 
(GUIs).  The users of the tool were able to experiment with the prototype and provide 
constructive feedback.  The developer then used the feedback to add a new functionality, correct 
a behavior, or improve its performance and usability.   

3. Operational Concept 

The software tool set implementing methods for creating RAPR files will consist of three main 
software tools:  (1) a dictionary editor, (2) a logic-table editor, and (3) a script editor.  To create a 
communication scenario, the user would perform the following steps: 



 

 7

• Step 1.  Create a new dictionary or load an existing dictionary to define a set of name-value 
pairs using the RAPR dictionary editor.  During the editing session, the user can view and 
correct the contents of the dictionary.  At the end of the session, the editor provides the user 
an option to save the dictionary into a text file that will be formatted using the extensible 
markup language (XML).  However, the editor will not require the user know the 
idiosyncratic syntax of the language or the structure of the file in order to format and save 
the data in an XML file. 

• Step 2.  Create a new logic table or load an existing logic table to define a set of discrete 
states in which a RAPR would behave in a special way using the RAPR logic-table editor.  
Similar to the process of creating a RAPR dictionary file, at the end of an editing session, 
the editor provides the user an option to save the contents of the logic table in an XML file 
without requiring the user to be concerned with the idiosyncrasy of the language.   

• Step 3.  Create a sequence of commands and a list of scheduled events defining traffic 
patterns for a host computer acting as a client using the RAPR script editor.  At the end of 
an editing session, the editor provides the user an option to save the scripts into a text file.   

• Step 4.  Create a sequence of commands in response to a specific request from a client for a 
host computer acting as a server using the script editor. At the end of an editing session, the 
editor provides the user an option to save the scripts into a text file.   

4. Performance Requirements 

4.1 The RAPR Dictionary Editor 

The RAPR dictionary editor will be equipped with a GUI providing a convenient means for 
editing and creating a dictionary.  The editor will provide the user a familiar way to open a file 
menu to select a menu item that will open an existing dictionary, create a new one, or save the 
current dictionary data to a file.  The editor will also provide the user a way to learn about the 
syntax of the dictionary or about using the editor to create or modify a dictionary. The editor will 
consist of two areas:  (1) editing area and (2) viewing area.   

4.1.1 The Editing Area   

The editing area will display a list of names corresponding to the XML tags that have been built 
into the RAPR tool.  Each name is associated with an entry box into which a new value is 
entered by the user.  Each name-value pair shall have two actions buttons:  one to add an item to 
the dictionary and the other to remove an item from the dictionary.   



 

 8

The editor will interact with the user to obtain the values of the label, field, and value tags.  The 
user-defined values will not include any character in the character set “[]<>”.  The editor will 
automatically handle the RaprDictionary, namespace, and item tags, effectively enabling the 
tags to be transparent to the user.  Therefore, the editing area will display the labels of the three 
tags, their corresponding input entry boxes, and two buttons for each tag as depicted in table 1. 

Table 1.  User defined input for the RAPR dictionary editor. 

label <user-defined value> Add/Update button Remove button 

field <user-defined value > Add/Update button Remove button 

value <user-defined value > Add/Edit button Remove button 

 

• The value tag. The user-defined field value of the value tag is a list of one or more value 
items.  Multiple value items can be specified by using a comma (,) to separate them or by 
using the notation low-high if they are numerical values; using a prefix [low-high] if a 
prefix is desired; or combining all these options in a single command.  For example, if the 
value of the field tag is defined as “alpha” and the expression, A, B, 1-3, host[11-
13], is entered into the entry field of the value tag and the Add button is pressed, then the 
tool will automatically generate the following tags and values (figure 4). 

 
<field>alpha</field> 
    <value>A</value> 
    <value>B</value> 
    <value>1</value> 
    <value>2</value> 
    <value>3</value> 
    <value>host11</value>
    <value>host12</value>
    <value>host13</value>
 

Figure 4.  A value tag example. 

• Adding or removing a value affects the sub-element(s) of the currently displayed field 
item.  If a user-defined field value is defined, then pressing the Add button will add a new 
value sub-element to the field element.  If a user-defined field value is not defined, then 
pressing the Add button shall open an editing window for the user to enter one or more 
value items. 

 Similarly, if the Remove button is pressed, then the tool will remove the specified value 
sub-element from the field element.  If the removal of a value sub-element causes the field 
element to have no sub-elements, then the field element itself shall also be removed from 
the dictionary. 



 

 9

• The field tag. The user-defined field value of the field tag will be single or multiple.  The 
format of “field names = values” will be used for adding or updating multiple values.  The 
left side and the right side of the character “=” will follow the rule described in the 
previous paragraph specifying how to enter multiple values in the entry field of the value 
tag.  For example, if the expression, hostA, host[1-3]=192.168.1.64, 
192.168.2.[100-102], is typed into the entry field of the field tag and the 
Add/Update button is pressed, the tool will generate four item tags, each has a field tag 
and a value tag as shown in figure 5. 

 
<item> 
    <field>hostA</field> 
        <value>192.168.1.64</value> 
</item> 
<item> 
    <field>host1</field> 
        <value>192.168.2.100</value>
</item> 
<item> 
    <field>host2</field> 
        <value>192.168.2.101</value>
</item> 
<item> 
    <field>host3</field> 
        <value>192.168.2.102</value>
</item> 
 

Figure 5.  A field tag example.   

 Adding a field creates a new field item and its corresponding value.  Updating a field 
replaces the content of an existing field with the corresponding value that is being 
displayed on the screen.  Updating thusly can cause the loss of other existing value data; 
therefore, the dictionary editor will confirm with the user before updating an existing field.   

 The comma-separated values will also be used for removing multiple values.  If the format 
of “field names = values” is accidentally used, then the tool will process only the left side 
of the equal character (=). For example, if the expression, hostA, host[1-3], is entered 
into the entry field of the field tag and the Remove button is pressed, the tool will remove 
four elements from the dictionary, consisting of four item elements and their sub-elements. 

• The label tag. Each label defines a namespace.  Each namespace can have one or more 
fields.  Each field has at least one value.  Adding or removing a label (namespace) affects 
the label element and its sub-elements. 

 Adding a new label creates an additional namespace in the dictionary and requires that all 
other fields contain valid entries.  If the requirement is not met, the tool will pop up an 
ephemeral window showing the field that has no value or invalid value.  Removing an 



 

 10

existing label purges all fields defined within the namespace and the label field itself.  
Updating an existing label replaces the existing contents with values that are being 
displayed.  Updating thusly can cause the loss of existing data; therefore, the editor will 
confirm with the user before performing the requested action. 

4.1.2 The Viewing Area   

This area is designed to display the entire contents of the internal dictionary.  The screen will be 
updated after the following user actions: 

• Loading an existing dictionary into the tool. 

• Creating a new dictionary. 

• Adding an item to the dictionary. 

• Updating an item in the dictionary. 

• Removing an item from the dictionary. 

The dictionary can be large; therefore, the viewing area of the dictionary editor will provide the 
user a vertical scrollbar to ease the navigation and viewing of the dictionary.    

4.1.3 The RAPR Dictionary XML Tags   

The RAPR dictionary editor will handle the XML tags that follow this paragraph.  A well-
formed dictionary will contain at least one namespace element.  Each namespace element will 
have one label sub-element and at least one item sub-elements.  Each item element shall have 
one or more field sub-elements.  Each field element shall have at least one value sub-elements.  
See figure 6. 

<RaprDictionary> 
    <namespace> 
        <label></label> 
        <item> 
            <field></field> 
                <value></value>
        </item> 
    </namespace> 
</RaprDictionary> 
 

Figure 6. Example of RAPR dictionary XML tag format.  

4.2 The RAPR Logic-Table Editor 

The RAPR logic-table editor will behave similarly to the dictionary editor to minimize the 
learning curve of the user.  The editor will provide the user a convenient way to open a File 
menu to select a menu item that will open an existing logic-table file, create a new one, or save 



 

 11

the current logic-table data to a file.  The editor will also provide the user a way to learn about 
the syntax of the logic table or about using the editor to create or modify a logic table.  The 
editor will consist of two areas:  (1) editing area and (2) viewing area.   

4.2.1 The Editing Area   

The editing area will display a list of names corresponding to the XML tags that have been built 
into the RAPR tool.  Each name associates with an entry box into which a new value is defined 
and entered by the user.  The user-defined values will not include any character in the character 
set “[]<>”.  Each name-value pair will have two actions buttons:  one to add a new item to the 
logic table or to update an existing item, and the other to remove an item from the logic table.   

Although the RAPR program can handles seven XML tags defining a logic table, the RAPR 
logic-table editor will interact with the user to obtain four values of the four tags:  value, id, 
percent, and entry.  The editor will automatically handle the RaprLogicTable, state, and 
logicid tags, effectively enabling the tags to be hidden from the user.  Therefore, the editing area 
will display the labels of the four tags, their corresponding input entry boxes, and two buttons for 
each tag according to table 2. 

Table 2.  User defined input for the RAPR logic-table editor.   

value <user-defined> Add/Update button Remove button 

id <user-defined> Add/Update button Remove button 

percent <user-defined> Add/Update button Remove button 

entry <user-defined> Add/Edit button Remove button 

 
The value is associated with a state of the logic table. The table can have more than one state.  
Each state has one or more logicid fields.  Each logicid has a percent field and one or more 
entry fields. Thus, adding or removing a value affects the entire set of three other fields:  id, 
percent, and entry.  Adding a new value creates an additional state in the logic table or replaces 
the entire contents of an existing state having the same value.  The latter action can cause the loss 
of existing data; therefore, the logic-table editor will ask the user for confirmation before 
replacing the present contents with the values that are currently displayed on the screen. 

Adding or removing an id affects the percent and the entry fields.  Adding a new id creates a 
new id item and its corresponding percent and the entry fields if it does not exist, or replaces an 
existing id field and its entire sub tags (percent and entry) if the id field already exists in the 
same state whose label is being displayed.  The latter action can cause the loss of existing data; 
therefore, the logic-table editor will ask the user for confirmation before replacing the current id 
with the one that is being displayed. 



 

 12

The value of the percent field is an optional parameter.  Although its tag is named percent, its 
value is assigned from 0.0 to 1.0*.  If the field is not assigned a value, it is assigned a default 
value of 1.0, indicating 100%.  Adding the percent field changes its current value; removing it 
sets the default value.   

Adding the entry field creates a new entry field that is specified under the logicid being 
displayed if a user-defined value is present; otherwise, the editor will pop up a window to 
provide the user a way for defining an entry. 

4.2.2 The Viewing Area   

This area is designed to display the entire contents of the internal logic table.  The editor will 
update the screen after the following user actions: 

• Loading an existing logic table into the tool. 

• Adding an item to the logic table. 

• Changing an item in the logic table. 

• Removing an item from the logic table. 

The logic table can be large; therefore, the viewing area of the logic-table editor will provide the 
user a vertical scrollbar to ease the navigation and viewing the dictionary.  

4.2.3 The RAPR Logic-Table XML Tags   

The RAPR logic-table editor will handle the XML tags that follow this paragraph.  A well-
formed logic table will have the RaprLogicTable tag as its root node.  The root node shall have 
one or more state elements.  Each state element has at most a value element.  Each value element 
shall have at least one logicid element.  Each logicid element shall have at most one id element, 
one percent element, and at least one entry element. See figure 7. 

                                                 
*Entering a value between 0.0 and 100.0 is inconsistent with the current RAPR specification. 



 

 13

 
<RaprLogicTable> 
    <state> 
        <value></value> 
            <logicid> 
                <id></id> 
                    <percent></percent> 
                    <entry></entry> 
            </logicid> 
    </state> 
</RaprLogicTable> 

Figure 7.  Example of RAPR logic-table XML tag format.  

4.3 The RAPR Script Editor  

The script editor is a graphical tool designed for describing a sequence of textual commands and 
scheduled events that define traffic patterns in a scenario.  Each line command or scheduled 
event is essentially a directive defining a specific behavior of the RAPR tool.  The editor will 
behave similarly to the other two editors to minimize the learning curve of the user.  The editor 
will provide the user a convenient way to open a File menu to select a menu item that will open 
an existing script file, create a new one, or save the current script to a file.  The editor will also 
provide the user a way to learn about the syntax of the script or about using the editor to create or 
modify a script file.  The editor will consist of two areas:  (1) editing area and (2) viewing area.   

4.3.1 The Editing Area   

The editing area will display two rows of editing interfaces.  The first row will be used for 
entering a comment, the second row for entering a command.  The action buttons located on the 
right side of the entry fields will behave the same way as they do in the dictionary and the logic-
table editors.  The editing area will display text labels distinguishing the comment and the 
command fields, their corresponding entry boxes, and two buttons for each entry box as shown 
in table 3. 

Table 3.  Editing area input for the RAPR script editor. 

comment <non-executable statements> Add/Edit button Remove button 

 

The Add/Edit button will serve two functions.  The first function will be to add an input 
comment into the script, the second will be to pop up a window showing the syntax of a 
command and a way for the user to compose a command depending on whether the contents of 
the entry box at the time the button is pressed.  If the entry box has a textual command, then the 
button shall do the first function; otherwise, the editor will perform the second function.  The 
Remove button will remove a comment or a command from the script.  The editor will also treat 



 

 14

the comma character “,” as a line separator in both entry fields and insert the comment character 
“#” at the first position of each comment line.  Table 4 provides an example of text being typed 
into the entry fields.  

Table 4.  An example of text being typed into the entry fields. 

 Entry Box Results 
Comment abc #abc 

 abc, ijk, xyz 
#abc 
#ijk 
#xyz 

Command abc def abc def 

 abc, xyz 
abc 
Xyz 

4.3.2 The Viewing Area   

This area is designed to display the script contents.  The editor will update the viewing area after 
the following user actions: 

• Loading an existing script file into the tool. 

• Adding a command or a comment into the script. 

• Removing a command or a comment from the script. 

The script may have a long sequence of comments and commands; therefore, the viewing area of 
the script editor will provide the user a vertical scrollbar to view any section of the script.  

4.3.3 RAPR Script – An Example   

Figure 8 shows an example of RAPR script. 
 
# log files … 
MGENLOG /var/log/mgen-SA.log 
RAPRLOG /var/log/rapr-SA.log 
# 
0.0 STOP 600.0 LISTEN UDP %SA_LISTEN_PORT% 
0.0 STOP 600.0 DECLARATIVE UDP SRC %SA_UNICAST_SRC_PORT% DST 
%SA_UNICAST_GROUP%/%SA_LISTEN_PORT% %SA_UNICAST_PATTERN% 
 

Figure 8.  An example of RAPR script. 



 

 15

5. Conclusion 

The specifications documented in this report describe not only the functional behaviors, but also 
the GUIs of a software tool.  The process of creating the requirements was iterative and provided 
an effective way for communicating the needs of the user to the developer.  The building and 
usage of the software prototype facilitated the interaction between the developer and the user, 
expediting the understanding and agreement of functional requirements.  From this, we are able 
to develop a prototype tool that is capable of generating the files required to create a 
communications scenario that can be deployed in the WEL MANET environment.



 

 16

References 

1. Nguyen, B.  The ARL TOPODEF Tool for Designing Mobile Ad-Hoc Network Topologies 

to Support Emulation, Proceedings of the IEEE Military Communications (MILCOM 2007) 
Conference, Orlando, Florida, October 2007. 

2.  The Protocol Engineering Advanced Networking Group, “The Real-time Application 
Representative (RAPR),” U.S. Naval Research Laboratory (NRL). 
http://pf.itd.nrl.navy.mil/rapr/rapr.html (accessed 05 November 2007). 

3. Ivanic, N; Rivera, B.; Gopaul, R.; Luu, B.; Gwyn, D. Gwyn; R; Hardy; K.; Scott; L.; Tran; 
G.; Nguyen; B.  A Scalable Test Bed for Emulating Wireless Mobile Ad-Hoc Networks, 
submitted to MILCOM 2008, San Diego, CA, 17 November 2008. 

4. The Protocol Engineering Advanced Networking Group, “The Multi-Generator (MGEN),” 
Version 4.2, U.S. Naval Research Laboratory (NRL). 
http://pf.itd.nrl.navy.mil/mgen/mgen.html  (accessed 06 December 2007). 

 



 

 17

Appendix.  Script Syntax 

The appendix describes the RAPR syntax that is expressed in prototypical GUIs to complement 
textual descriptions of requirement, serving as unambiguous specifications. 

 

Figure A-1. Behavior events. 

 



 

 18

 

Figure A-2. Reception events. 

 

Figure A-3. RAPR events. 

 

Figure A-4. Run-time interface. 

 



 

 19

 

Figure A-5.  RAPR global commands. 

 

Figure A-6.  Multi-Generator (MGEN) patterns. 



 

 20

Acronyms 

ARL U.S. Army Research Laboratory  

GUIs  graphical user interfaces  

NRL  U.S. Naval Research Laboratory  

MANET mobile ad hoc network 

MGEN Multi-Generator 

RAPR Real-time Application Representative 

WEL  wireless emulation laboratory 

XML   extensible markup language



 

 21

No. of 

Copies Organization 
 
1 (PDF ADMNSTR 
ONLY) DEFNS TECHL INFO CTR 
 ATTN DTIC OCP (ELECTRONIC COPY) 
 8725 JOHN J KINGMAN RD STE 0944 
 FT BELVOIR VA 22060-6218 
 
1 CD US ARMY RSRCH LAB 
 ATTN AMSRD ARL CI OK TP 
 TECHL LIB T LANDFRIED 
 BLDG 4600 
 APG MD 21005-5066 
 
3 CDs US ARMY RSRCH LAB 
 ATTN AMSRD ARL CI OK T 
 TECHL PUB 
 ATTN AMSRD ARL CI OK TL 
 TECHL LIB 
 ATTN IMNE ALC IMS MAIL & 
 RECORDS MGMT 
 ADELPHI MD 20783-1197 
 
9HCs US ARMY RSRCH LAB 
1 CD ATTN AMSRD ARL CI NT 

R HARDY (2 HCs, 1 CD) 
B NGUYEN 
L SCOTT 
K MARCUS 
N IVANIC 
R PRESSLEY 
B RIVERA 
ATTN AMSRD ARL CI N 
G RACINE 

 ADELPHI MD 20783-1197 
 
Total: 15 (1 PDF, 9 HCs, 5 CDs) 
 



 

 22

 

 

 

 

 

 

 

 

 

 

 

 

INTENTIONALLY LEFT BLANK. 

 


